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Introduction

This report covers over five years of research in CFD and its applications. During that

time, I completed the publication of work on hypersonic flows, modeled incompressible

flow about submarine hulls, and computed the flow about supersonic transport aircraft

on parallel computers. Finally, using CFD as an established tool, I began to explore

aerodynamic optimization on parallel architectures.

The objective of this work has always been to provide better tools to vehicle designers.

Submarine design requires accurate force and moment calculations in flows with thick

boundary layers and large separated vortices. Low noise production is critical, so flow into

the propulsor region must be predicted accurately.

The High Speed Civil Transport (HSCT) has been the subject of the most recent work.

This vehicle is to be a passenger aircraft, with the promise of cutting overseas flight times

by more than half. A successful design must far surpass the performance of the only exist-

ing comparable plane, the Concorde. Fuel economy, other operational costs, environmental

impact, and range must all be improved substantially. The aircraft must be able to fly

many more routes than the Concorde, and can only do so if noise production can be limited.

For all of these reasons, improved design tools are required, and these tools must eventu-

ally integrate optimization, external aerodynamics, propulsion, structures, heat transfer,

controls, and perhaps other disciplines. If this project contributes to improved design tools

for US industry, and thus to our economic competitiveness, it is successful.

The work was done under cooperative agreements NCC 2-505 and NCC 2-796. I was

a co-principal investigator under the first agreement from July 1989 to May 1993. I was

principal investigator under the second agreement from May 1993 until January 1995. The

work completed during these periods will be highlighted in roughly chronological order.

Incompressible Flow for Submarine Hydrodynamics

The goal of this project was to accurately and quickly compute flows about submarine

hulls. The results would be used in the DARPA SUBOFF project to evaluate the state of

the art in hydrodynamic codes, and to select codes for future use in submarine design.

The initial work was done with the INS-3D code. Accomplishments included moving the

code to Cray-2 and Cray Y-MP architectures, addition of the Baldwin-Lomax turbulence

model to the code, and implementation of a zonal grid scheme. Solutions were converged

on a 10-zone grid, representing the hull, fairwater (sail), and four tail appendages. A

13-zone solution with 1.9 million points and improved boundary layer resolution was in

progress when emphasis was shifted to the INS3D-LU code.



In a meeting at Ames in December 19897, representatives of the SUBOFF project

emphasized the need for advanced turbulence models and faster computational times.

They were particularly impressed with Seokkwan Yoon's presentation of the performance

of the INS3D-LU code. By April 1990, work with INS-3D was suspended and I was using
the LU code full time.

To the LU code I added periodic boundary conditions, grid singularity conditions, and

a turbulence model. The periodic conditions required conversion of several subroutines to

periodic form. I also optimized the code to run as fast as 6 gseconds/point/iteration on
one Cray Y-MP processor.

In order to extract data required for the SUBOFF project, I wrote a general interpolation

code, which returns the Q variables for any x,y,z location within a grid, using a tetrahedral

decomposition of the grid. The results were presented at a SUBOFF meeting in Annapolis 9.

The interest of the SUBOFF committee was limited to a small portion of the requested

data, which happened to include the regions most poorly modeled by our grids and the

LU code. As a result, the work fared poorly in SUBOFF evaluations.

On return to Ames, I set out to find the true source of the errors, using test cases

which would isolate potential problems. Periodic flows about a cylinder and flow about a

hemisphere cylinder with a grid singularity converged nicely. A coarse grid on a flat plate

reproduced the Blasius boundary layer for low Reynolds numbers. The only case with

exceptional errors was one which attempted to compute a high Reynolds number solution

on a flat plate. After extensive tests of various grid stretching strategies and smoothing

parameters, this problem remained. The deficiency of the LU code in convergence on fine

grids has still not been corrected, although significant progress has been made recently by
Goetz Klopfer and Dean Kontinos.

In order to continue with the SUBOFF project, coarsened grids were used. With spacing

of 1.0E-3, the solution converged, but with no boundary layer development at all. With

1.0F_,-5 spacing, an approximation to the boundary layer was obtained, but convergence

was poor. Aside from inaccurate boundary layer thickness, a reasonable representation of

the flow physics was obtained.

The improved results were presented to SUBOFF committee members at David Taylor

Research Center in September 1990. They were pleased by visualizations of vortex sepa-

ration phenomena near the fairwater which other SUBOFF participants had missed. As

expected, wake-survey data showed only qualitative agreement with experimental results,

due to the inablity to converge solutions on a fine grid.

The SUBOFF committee appeared to conclude that no available CFD code was ade-

quate for outright prediction of drag or moments on a full submarine. Funding originally

planned for ongoing work was redirected, and the project ended. A promised final report
was never distributed.

Other work during this time period included testing of non-reflective boundary con-

ditions based on the work of Bayliss, Gunzburger, and Turkel. Although developed for

spherical outer boundaries and laminar flow, the conditions improved convergence on the

SUBOFF cases, and allowed an outer boundary only two body lengths from the vehicle

surface. I served as mentor for highschool student Adam Nash, and he was helping me

make test runs to quantify the effect of the nonreflective boundary conditions when this
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project ended in December 1990.

Parallel CFD Computation

The national HPCCP program was established, including a Computational Aerosciences

(CAS) element. CFD was to be performed on highly parallel computers, with faster

testbed machines obtained on a regular basis. Long-range goals included teraflops-rate

multidisciplinary optimization of aerospace vehicles.

In January 1991, I began exploring the use of parallel, distributed memory computers

for CFD. The initial plan was to port the CNS (Compressible Navier-Stokes) code to the

Intel iPSC/860. CNS was a code which I developed for my Ph.D. thesis work in 1987 and

19881'2, and which became a standard within the Applied Computational Fluids (later
Computational Aerosciences) branch at NASA Ames.

My first tests on the iPSC/860 involved a simple thermal relaxation code, which was

small enough to allow short compilation times and easy modification. This code later

became instrumental in testing parallel I/O strategies, and was requested by researchers

at NAS, RIACS, Dartmouth, and several Intel Corporation sites. This work revealed some

surprising behavior of the iPSC/860 I/O system, and was used in defining I/O requirements
for future machines l°.

The CNS port was under way from March through August 1991, when I learned that

Sisira Weeratunga had parallelized the ARC3D algorithm on the iPSC/860. His work was

based on the OVERFLOW code, and he was using a more sophistocated parallelization

method, so I dropped the CNS port and got a copy of what later was called Parallel

OVERFLOW. I added parallel I/O to the code (it could only run a single, internally-

generated grid), as well as a restart capability. This allowed testing to begin with a flat

plate case, which ran at 32 microseconds/point/iteration on 32 processors.

In October 1991, I computed an Euler solution on the Boeing 1807 wing body, a pre-

liminary HSCT (High Speed Civil Transport) design. For this case, computational times

improved to 28.9 /zsec/pt/it on 32 processors, with timings of 18.8 and 11.1 on 64 and

128 processors, respectively. Several tests were made to explore differences between the

parallel solution and UPS Cray results. The differences were identified to be the result of

different effective grid resolution in the two codes.

In November 1991, Ron Bailey identified my wing-body results (presented by Tom Ed-

wards) as possibly the first 3-D external flow calculations on a massively parallel machine.

This led to a video 11 describing the work, later used in HPCCP program reviews by Ken

Stevens, and finally incorporated in a professionally- developed video used for presenta-

tions to Congress during the budgeting process. Graphics from this project have been

requested dozens of times, and included in the publication "High Performance Computing

and Communications: Toward a National Information Infrastructure", otherwise known

as the "FY 1994 Blue Book" of the National Coordination Office for HPCC.

In March 1992, I completed a parallel Baldwin-Lomax model. This allowed Navier-

Stokes HSCT solutions to be computed in parallel la. An attempt to present the work

at "Parallel CFD '93" was thwarted by the 427 approval process, which took 120 days,

extending past the abstract deadline. I refused an invitation to present the work at "Physics

Computing '93" in Albuquerque, New Mexico, on the recommendation of my technical

monitor, due to joint sponsorship by the European Physical Society.
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In July 1992,work beganwith a new version of Parallel OVERFLOW, in which Sisira
Weeratungahad included Chimera grid capabilities. This allowedthe computation of more
complex geometries,limited only by grid generation capabilities and available memory on
the parallel computers. Computational time was now down to about 20/_seconds/point
/iteration on 32 processors. Computations included a wing/nacelle in September 1992,

wing/body/nacelle in October 1992, and wing/nacelle/diverter in October 19934-6,14,15.

In response to a Boeing request in April 1993, I prepared a test case for the Parallel

OVERFLOW code, and assisted John Wai of Boeing Military Aircraft in running the case

on their parallel system.

Throughout this project I have contributed to other's work by enhancing communica-

tions. I maintained an email list and sent written notes of NAS Parallel Systems meetings

to interested RFA civil service and contractor researchers. At those meetings I was often

the only user representing our needs to the NAS staff. I established a series of meetings on

HPC and CAS topics. Half of the meetings were for MCAT Parallel Computing Section

employees only, and are continuing. The others were open technical sessions, which were

converted to branch HPC meetings by Terry Holst.

I contributed to the K-12 education mandate of HPCCP, by mentoring a teacher during

the summer of 1993. This led to a package of teaching materials, in both paper and

electronic form, which introduces the concept of representing continuous quantities on a

discreet grid. I also organized a 3-hour session to introduce a group of high school teachers

from Mendocino County to concepts which might be introduced in their classrooms.

Parallel Aerodynamic Optimization

In May 1993, I first ran Parallel OVERFLOW under the control of the NPSOL opti-

mizer, moving closer to the design goals of HPCC. This tool was tested against the Haack-

Adams results of Samson Cheung and Phil Aaronson, and later applied to a wing-fuselage

geometry. The work required new parallel grid-modification routines, and parallelization

of force and moment routines. The code also had to be modified to accomodate larger

amounts of Chimera interface information than had been provided for.

The work using NPSOL used parallel computation within each flow solution, but ran

those solutions one at a time. This meant that an additional level of parallelism was going

unexploited. NPSOL was difficult to parallelize, and in February 1994, Samson Cheung

wrote a simpler version of the quasi-Newton optimization method which was designed for

parallelization. I developed a grid generation code which would produce wing surface and

volume grids as a function of a broad set of design variables. These include span, chord,

twist, sweep, thickness, and camber. Each variable can be described multiple locations

where appropriate.

The combined wing generation and optimization code was originally targeted for the

iPSC/860 or the Intel Paragon, but announcement of the impending acquisition of an IBM

SP-2 system changed the focus to workstation clusters which have more in common with the

SP-2. The code was tested on the NAS SPS machines, and on the RFA workstation cluster,

with encouraging results. The required cases for derivitive calculations and line searches

were done in parallel, using one serial flow solver on each workstation. Maximum parallel

speedup will be achieved by using the MEDUSA code of Merritt Smith for distribution

of zones across multiple machines, and the multipartitioning algorithms of Rob van der

4



Wijngaart for parallelism within zones.

Work Since August 1994
This time period beganwith efforts to extend prior results to new architectures. The

OVERFLOW solver wascompiled on the IBM SP2 computer, and an account on a Cray
T3D at Pittsburg was obtained. On the SP2, I worked with the PVM and MPI message
passinglibraries.

A major goal for this period was to compute a 19-zone,5 million point Navier-Stokes
solution about the Boeing ReferenceH geometry with engine nacellesand diverters. Such
a large problem would be impossibleon the iPSC/860, soan account on the Intel Paragon
wasobtained. A copy of Weeratunga'sparallel flow solver proved to be poorly debugged,
relative to prior versionson the iPSC/860. I identified and fixed 7 bugs which prevented
the code from being used effectively. I was then able to obtain two to three orders of
magnitude convergenceon a 7-zonesubsetof the target problem. Poor Chimera interfaces
are the likely reason that further convergenceis difficult. The nacelleswere not added
during the cooperative agreementperiod.

Graphics of my optimization and HSCT work were in demand during this period. I
provided slides to Terry Holst, Merritt Smith, Guru Guruswamy, and I.C. Chang for a
variety of presentations. I alsosupporteda method for extracting cross-sectionaldata from
CFD datasets, which I developedduring HSCT validation studies. Customers included
Francisco Torres and JosephGarcia. Finally, I did someeducational outreach by visiting
a classroomof 4th graders preparing to attend the Ames AerospaceEncounter, and by
answeringquestionsfor a high schoolstudent who has a grant to write a paper on NASA
policy.

Summary and Conclusions

During the last five years, CFD has matured substantially. Pure CFD research remains

to be done, but much of the focus has shifted to integration of CFD into the design process.

The work under these cooperative agreements reflects this trend. The recent work, and

work which is planned, is designed to enhance the competitiveness of the US aerospace

industry. CFD and optimization approaches are being developed and tested, so that the

industry can better choose which methods to adopt in their design processes. The range

of computer architectures has been dramatically broadened, as the assumption that only

huge vector supercomputers could be useful has faded. Today, researchers and industry

can trade off time, cost, and availabilty, choosing vector supercomputers, scalable parallel

architectures, networked workstations, or heterogenous combinations of these to complete

required computations efficiently.
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